
alpha +

ILC_2014 :: start

Yet Another Wiki!
Alain Marty Engineer Architect

66180, Villeneuve de la Raho, France
marty.alain@free.fr

ABSTRACT
« An environment where the markup, styling and scripting is
all S-expression based would be nice. » would have said the
father of LISP, John McCarthy [1]. It's the goal which was given
to the lambdaway project: 1) build a small wiki environment,
(alphawiki), and 2) define a small syntax, (lambdatalk), which
allows markup, styling and scripting based on S-expressions.

Keywords
Lisp, Javascript, Regular Expressions, CMS, wiki.

1.......INTRODUCTION

1.1......The context
Web browsers can parse data (HTML code, CSS rules, scripts, ...)
stored on the server side and display rich multimedia dynamic
pages on the client side. Some HTML functions, (texarea, input,
form, ...) associated with script languages (PHP, Javascript, Regular
Expressions, ...) allow interactions with these data leading to web
applications like blogs, wikis and CMS. Hundreds of engines have
been built, managing files on the server side and interfaces on the
client side, such as Wordpress, Wikipedia, Joomla,.... Syntaxes, like
the de facto standard Markdown syntax, have been proposed to
simplify and unify the markup and the styling but give no help on
the scripting side. Some recent works have been done in this
direction, for instance:

Skribe [5] a text-processor based on the SCHEME
programming language dedicated to writing web pages,
HOP [6] a Lisp-like progamming language for the Web 2.0,
based on SCHEME,
BRL [7] based on SCHEME and designed for server-side
WWW-based applications.

All of these projects are great and powerful. With the plain benefit
of existing SCHEME implementations they make a strong and
Lisp-like junction between the mark-up (HTML/CSS) and
programming (JS, PHP,...) syntaxes. But these tools are devoted to
developers, not to users or web-designers. It's the the lambdaway
project's goal to give all of them a common environment.

1.2......The lambdaway project
Why such a project? What is the current state? Who is concerned?

1.2.1why?
1) When Ward Cunningham [2] invented the concept of wiki in
1995, a kind of online text-editor, he had in mind the powerful
functionalities of an amazing software created in 1987 for AppleInc

by Bill Atkinson and Dan Winkler, HyperCard as the environment
+ HyperTalk as the language (both killed by Steve Jobs in 2001!).
Nowadays, there are a lot of wiki engines which are well integrated
in the browsers (the best known being Wikipedia) but the
languages/syntaxes used for editing are far from being comparable
to the HyperTalk powerful and user friendly language.
2) When Brendan Eich [3] created in 1995 the Javascript

language for the Netscape browser, he had in his mind the powerful
functionalities of the LISP language created in 1958 by John Mc
Carthy at MIT. But this language, which can be considered as a
LISP in C clothes, is working at the low level of the browser which
is far from being comparable to the HyperCard nice and user
friendly environment.
The result is not actually the online HyperCard+HyperTalk Ward
Cunningham was dreaming of!

1.2.2what?
alphawiki is a small wiki coming with a small language,
lambdaTalk:
1) alphawiki tries to fill the gap between the complex DOM and
the user with a gentle interface similar to HyperCard's one : pages
are cards with text containers, pictures and buttons.
2) lambdatalk tries to fill the gap between the complex Javascript
language and the user, with a simple and unified notation coming
from LISP, used for creating rich texts, structured pages and
dynamic content.
3) The couple alphawiki and lambdatalk intends to be an easy to
use online HyperCard+HyperTalk, very small and as most
elegant as possible.

1.2.3who?
alphawiki is intended to be a tool for the writer, the designer and
the coder, in a collaborative work for creating and sharing on
internet, complex chunks of rich, structured and dynamic data :
1) the writer - who may be a "newby" - is (supposed to be) an
expert in his domain and he brings the information ; with a reduced
set of tags, he can fill pages with minimally structured and enriched
informations (titles, paragraphs, lists, images, bold, italic, ...)
2) the designer - who may be "smart" - strengths the information
and gives it the best shape for the best communication ; with the
plain set of HTML/CSS functionalities, he can compose rich and
sophisticated pages,
3) the coder - who may be a "ninja" - extends the functionalities as
needed ; on the top, he can build new tools (a Table of Content, a
worksheet, a paint or draw tool, math functions, a lisp console, ...)
The three levels share the same language, lambdaTalk, in an easy
learning curve smoothing the frontiers between the writer, the
designer and the coder.

1.3......In this paper
The 100kb alphawiki's engine can be easily installed on any ISP.
It's mainly built on two small "cylinders":

1) PHP.php: on the server side a 460 lines PHP code does
everything about pages data, reading and writing, security,
administration, ...
2) JS.js: on the client side a 1000 lines JS code manages the
user interface and contains the code interpreter.

The present contribution will forget alphawiki and focus on the
interpreter, lambdatalk, following two levels:

1) using lambdatalk's primitive functions, for web-designers,
2) coding lambdatalk, with user functions, for coders,

each one viewed on both sides,
1) the underlying Javascript code's analyzis,
2) some examples of user lambdatalk code.

2.......USING LAMBDATALK (level 1)

An alphawiki website is made of several pages sharing the same
appearance. Each page can be edited (by authorized users), the
result being displayed in real-time, following the wiki-code
evaluation. This is a simple example:

The wiki-code is a string made of plain text containing words and
symbolic-expressions.

{first {first
{first {first

{first rest} } } } }
Symbolic-expressions are nested expressions of the form {first
rest} where first is a word belonging to a dictionary (or a
symbolic-expr returning such a word), and rest is a string of values
and symbolic-expressions.
Words are ignored by the interpreter. Symbolic-expressions are
evaluated according to a primitive function's dictionary. For
instance in the following string, the dictionary's functions "b" (for
bold) and "i" (for italic) will be applyed to the red words:

I am a simple word,
I am a {b fat word},
You are a {b {i fat italicized word}},
This is a product : {* 1 2 3 4 5 6}.

displays:

I am a simple word,
I am a fat word,
You are a fat italicized word,
This is a product : 720.

The choice of curly braces "{}" instead of Lisp's standard round
parentheses "()" comes from the wiki page context where round
parentheses have to be used for other usages then bracketing
symbolic-expressions.
The JS interpreter's single task is to translate the wiki-code in
the HTML+CSS+JS syntaxes known by the browser. It will be up
to the browser's engine to do the hard work to interpret and
display the result. Lambdatalk and HTML sharing the same tree
structure makes the task rather straightforward.
The next section describes the tiny but complete JS code (level 1),
and two of the hundred of functions belonging to the primitive's
dictionary.

2.1.......JavaScript code (level 1)
The wiki-code is caught and evaluated by the evaluate() function
working on a dictionary containing primitive functions.
In the approach followed by the majority of LISP interpreters, the
input string is tokenized and transformed in a tree structure,
generally a nested array. The tree structure is recursively walked
through and the "leaves" are evaluated. In such an approach strings
must be quoted. In a wiki context where the main content is made
of plain text, such a constraint must be avoided. Thus, lambdatalk
followed a different approach based on a single loop working on a
single Regular Expression inspired from Steven Levithan [4].

2.1.1......the evaluate() function

function evaluate(str) {
 str = preprocessing(str);

 str = eval_special_forms('if', str);
 str = eval_special_forms('lambda', str);
 str = eval_special_forms('def', str, true);
 str = eval_sexprs(str);
 str = postprocessing(str);
 return str;
};

We ignore the preprocessing() and postprocessing() functions
which don't bring here relevant informations, and the greyed lines
which will come back at the level 2. The eval_sexprs() function's
complete code can be written in this very compact shape:

function eval_sexprs(str) {
 while (str != (str = str.replace(
 /\{([^\s{}]*)(?:[\s]*)([^{}]*)\}/g,
 function(m, f, r) {
 return (dico.hasOwnProperty(f))?
 dico[f].apply(null,[r]):
 '('+f+' '+r+')';
 })));
 return str;
}

But, in order to better understand the eval_sexprs()'s mechanism,
we are going to split it in three parts.

2.1.1.1......the main loop
The eval_sexprs() function is a single loop using a single Regular
Expression to catch symbolic-expressions, and a do_apply()
function to replace them by their value:

function eval_sexprs(str) {
 while (str != (str =
 str.replace(loop_rex, do_apply)));
 return str;
}

2.1.1.2.......the main regular expression
The loop-rex Regular Expression is carefully designed to catch
{first rest} symbolic-expressions :

var loop_rex =
 /\{([^\s{}]*)(?:[\s]*)([^{}]*)\}/g;
-
1) / start of the regexp
2) \{ begins with a {
3) ([^\s{}]*) everything except "s{}": first
4) (?:[\s]*) zero or several spaces
5) ([^{}]*) everything except "{}" : rest
6) \} ends with a }
7) / end of the regexp
8) g go next
-

2.1.1.3.......the do_apply() function
Given a symbolic-expression {first rest}, the do_apply() function
applies first to rest, if it belongs to the dictionary called dico, or
returns as it is the invalid symbolic-expression, if not.

function do_apply() {
 var first = arguments[1], rest = arguments[2];
 if (dico.hasOwnProperty(first))
 return dico[first].apply(null,[rest]);
 else
 return '('+ first +' '+ rest +')';
};

2.1.2......dictionary
The dictionary contains a hundred of primitive Javascript functions.
The complete dictionary's content can be seen in the file JS.js.

2.1.2.1 primitives

HTML:
1) main tags:
@, div, span, a, [ul, ol, li], [dl, dt,
dd], [table, tr, td], pre, a, img, canvas,
iframe, embed, input, script, style
2) some others (sugar):
h1 to h6, p, b, i, u, center, br, hr, sup,
sub, del, blockquote,..

Math operators and functions:
1) math operators:
>, < , >=, <=, =, not, or, and, +, *, -,
/, %,
2) JS Math object functions:
abs, acos, asin, atan, atan2, ceil, cos,
exp, floor, log, random, round, sin, sqrt,
tan, pow, min, max, PI, E,

alphawiki's custom extensions:
lib, date, note, note_start, note_end,
show, lightbox, back, drag, listing, lisp,
lc, sheet, forum, editable, require,
include, first, rest, nth, length, serie,
map, reduce,

MathML tags: they are included but are not
recognized by Chrome
math, mrow, mfrac, mo, mi, mn, msup, msub,
msubsup, msqrt, munder, mover,..

2.1.2.2 primitive's code
Here are given 3 illustrating examples.

1) the '*' math operator :
dico['*'] = function() {
 var args = arguments[0].split(' ');
 for (var r=1, i=0; i< args.length; i++)
 if (args[i] !== '')
 r *= args[i];
 return r;
};

2) HTML tags: this function builds functions
on the HTML tags set:
var htmltags = ['div','span',.., etc...];
for (var i=0; i< htmltags.length; i++) {
 dico[htmltags[i]] = function(tag) {
 return function() {
 var attr =
 arguments[0].match(/@ @[sS]*?@ @/);
 if (attr == null)
 return '< '+tag+' >'+arguments[0]+
 '< /'+tag+' >';
 arguments[0] =
 arguments[0].replace(attr[0], '')
 .trim();
 attr = attr[0].replace(/^@ @/, '')
 .replace(/@ @$/, '');
 return '< '+tag+' '+attr+' >'+
 arguments[0]+'< /'+tag+' >';
 }
 }(htmltags[i]);
}

3) the '@' function catches all the
HTML tags attributes and CSS rules:
dico['@'] = function () {
 return '@ @' + arguments[0] + '@ @'
};

Note : actually there is no space inside
the previous couples @ @.

2.1.3......steps & speed
According to the main evaluation loop, symbolic-expressions are
evaluated from the leaves upto the root. Here are given basic

examples of the evaluation steps:

2.1.3.1. evaluating a sequence of words:

0: {center {b an {u underlined word}}}
1: {center {b an < u >underlined word< /u >}}
2: {center < b > an
 < u >underlined word< /u >< /b >}
3: < center > < b > an < u >underlined word
 < /u >< /b >< /center >

This valid HTML expression will be given back to the browser's
engine for evaluation.

2.1.3.2. evaluating a math expression:

0: {sqrt {+ {* 3 3} {* 4 4}}}
1: {sqrt {+ 9 16}}
2: {sqrt 25}
3: 5

This value will be given to the browser's engine to display: 5

2.1.3.3. about evaluation speed
Alphawiki allows a rather comfortable realtime edition of a
standard page. Tested on a MacBook Air:

Pages's content in chars Speed
1 A page containing about 5,000 chars 1 to 2 ms
3 Pages between 20,000 and 50,000 chars 5 to 10 ms

2

A very heavy test page "Jules Verne, Ile
mystérieuse" built on a plain text of
1,228,778 chars with a TOC of 62

chapters (about 15 360 lines = 300 pages
of 50 lines)

about 70 ms

2.2......Lambdatalk code (level 1)
In this section we will focus on the lambdatalk user side and
present some applications of the the built-in functionalities given
by the JS interpreter level 1:

to style and compose text,
to compute mathematical expressions,
to display images,
to interact with dynamic elements,
to build A4 formats, slides, posters,
to create a forum, a spreadsheet,
to call external JS code.

2.2.1......some text and image in a block

{div
 {@ id="myId" style="
 position:relative;
 left:50px; top:10px;
 width:210px; height:50px;
 padding:5px; margin-bottom:-90px;
 background:cyan; border:1px solid;
 box-shadow:0 0 8px black;
 -moz-transform:rotate(-5deg);
 -webkit-transform:rotate(-5deg);"}
{img
 {@ src="data/amelie_sepia.jpg"
 height="50"
 title="Amélie Poulain"
 style="float:left; margin-right:20px;"}}
 {ul
 {li I am {b Amélie Poulain},}
 {li I live in {i Montmartre}, Paris,}
 {li I am fan of
 {a {@ href="http://www.pixar.com/"}PIXAR}}
 }
}

It must be noted that the function @ (pronounce "at") comes with
HTML attributes and CSS rules written in their standard syntax,
and NOT as symbolic-expressions. Using such a pure s-expression:

{@ {id myId} {style
 {text-align center} {border 1px solid}}}

instead of:

{@ id="myId" style="
 text-align:center; border:1px solid;"}

would respect more nicely the claimed notation's coherence but
this would increase the dictionary with innumerable CSS rules
and probably slow down the evaluation, would increase the
difficulty to follow the future evolutions of HTML tags, attributes
and CSS rules, and would be less convenient for beginners and for
web-designers. This is a matter of debate and choice.

2.2.2......numbers & booleans
lambdatalk offers the usual numeric computation capabilities that
a pocket calculator would have. Following the same syntax {first
rest} where first is a math function (+, -, *, /, %, sqrt, ...) and rest a
sequence of numbers and/or valid s-expressions, any complex math
expressions can be evaluated and inserted anywhere in the page.
For instance writing in the editor frame:

1: {/ 1 2}
2: {* 1 2 3 4 5 6}
3: hypo(3,4) = {sqrt {+ {* 3 3} {* 4 4}}}
4: sin(90°) = {sin {/ {PI} 2}}
5: {/ {round {* {PI} {pow 10 4}}} {pow 10 4}}
6: {map sqrt {serie 2 4}}
7: {reduce * {serie 1 6}}
8: {< 1 2}
9: {= 1 1.000}
10: {or true false}
11: {and true false}
12: {b 1+2+3}, {+ 1 2 3} and {u {+ 1 2 3}}

displays:

1: 0.5
2: 720
3: hypo(3,4) = 5
4: sin(90°) = 1
5: 3.1416
6: 1.4142135623730951 1.7320508075688772 2
7: 720
8: true
9: true
10: true
11: false
12: 1+2+3, 6 and 6

Note the similarity between words-based and numbers-based
symbolic expressions, allowing an easy mixture of words and
numbers everywhere in a page.

2.2.3......input & script
The input and script functions make it possible to call JS scripts to
bring interactivity in the wiki pages.

2.2.3.1. input

{p A script interacting with the user:

 {input
 {@ id="input"
 type="text"
 placeholder="Please, enter your name"
 onkeyup="
 getId('output').innerHTML=
 'Hello '+getId('input').value+' !' "}}}

{h3 {@ id="output"}}

A script interacting with the user:

 Amélie Poulain

Hello Amélie Poulain!
2.2.3.2. script

{div
 {@ id="output"
 style="font:bold 1.3em courier; color:red;"
 }time:}
{input
 {@ type="submit" value="start" onclick="start()"
}}
{input
 {@ type="submit" value="stop" onclick="stop()"
}}
{script ••
function start() {
 document.chrono=window.setInterval(
 function() {
 getId('output').innerHTML='time: '
 + LAMBDATALK.eval_sexprs('{date}');
 }, 1000);
}
function stop() {
 window.clearInterval(document.chrono);
}
••}

time: 2014 08 14 12 30 30

start stop

Note: for the sake of security, the input and script functions don't
accept external links.

2.2.4......plugins
Lambdatalk can call more complex scripts stored in the "plugins"
folder and executed interactively in the wiki page. For instance, it's
possible to compute Ray Tracing, 3D shapes, fractals, ...

Spreadsheets are known to be a good illustration of the functional
approach. It's possible to insert a spreadsheet in a wiki page and to
make some calculus in it. For instance, the symbolic-expression {+
{lc 2 4} {lc 3 4} {lc 4 4}} written in the cell L6C4 will display the
sum of the contents of cells L2C4, L3C4 and L4C4, as it can be
seen in the figure below:

I am Amélie Poulain,

I live in Montmartre, Paris,

I am fan of PIXAR

alphawiki can be considered as a stack of pages. In the same way,
a spreadsheet embedded in a page can be viewed as a grid of
micro-pages with all the lambdatalk's capabilities. We are going to
see in the level 2 that these capabilities can be extended grace to
three powerful special forms.

3......CODING LAMBDATALK (level 2)

lambdatalk comes with the smallest set of 3 special forms
allowing to code:

if, lambda, def
1) {if boolean then TRUE_term else FALSE_term}

allows alternative evaluation according to a given
boolean values,

2) {lambda {:arguments} s-expression}
allows binding in symbolic-expressions unknown terms
to future values via a set of arguments; a kind of delayed
evaluation,

3) {def name value}
allows giving a name to constants, evaluable symbolic-
expressions and functions.

As we are going to see, with these 3 special forms, lambdatalk has
first class functions, functions can be recursive, called partially,
nestable and used for local variables.

3.1.....JS INTERPRETER (level 2)
De facto, the symbolic-expressions built on the 3 special forms
contain unknown terms. For instance in {def myPI 3.1416} the
term myPI is unknown and the symbolic-expression can't be
evaluated by the simplified evaluate() function shown previously.
These special forms must be handled in a preprocessing phase
before the evaluation loop.

3.1.1 evaluate() function (complete)

function evaluate(str) {
 str = preprocessing(str);
 str = eval_special_forms('if', str);
 str = eval_special_forms('lambda', str);
 str = eval_special_forms('def', str, true);
 str = eval_sexprs(str);
 str = postprocessing(str);
 return str;
}

Remember that the greyed lines belong to the level 1.

3.1.2 evaluating sequence of S-expressions built with
if, lambda and def
The eval_special_forms() function catches symbolic-expressions
built on special forms if, lambda, def and replaces them in the
code string by their value or by symbolic-expressions evaluated

when all the missing values are given.

function eval_special_forms(form, str, flag){
 while (true) {
 var s = catch_sexpression(form, str);
 if (s === 'none') break;
 switch (form) {
 case 'if':
 str = str.replace('{if '+s+'}',
 eval_if(s.trim()));
 break;
 case 'lambda':
 str = str.replace('{lambda '+s+'}',
 eval_lambda(s.trim()));
 break;
 case 'def':
 str = str.replace('{def '+s+'}',
 eval_def(s.trim(),flag));
 break;
 }
 }
 return str;
}

3.1.3 catching an S-epxression in the wiki-code string
The catch_sexpression() function catches the symbolic-
expressions according to the given symbol if, lambda, def.

function catch_sexpression(symbol, str) {
 symbol = '{' + symbol + ' ';
 var start = str.indexOf(symbol);
 if (start == -1) return 'none';
 var long = symbol.length, nb=1, index=start;
 while(nb > 0) {
 index++;
 if (str.charAt(index) == '{') nb++;
 else if (str.charAt(index) == '}') nb--;
 }
 return str.substring(start+long, index);
}

3.1.4......eval_lambda()
We remember that the evaluate() function used a Regular
Expression to replace the symbolic-expressions by their values. The
eval_lambda() function does the same:

The eval_lambda() function builds a function with a list of
arguments and a body and stores it in the dictionary under a
randomized name, i.e. lambda_1234.
When called with some values, this function will use the
arguments' names as Regular Expression patterns to replace in
the body the arguments' occurences by the corresponding
values.
It will return a symbolic-expression, a value, a word or a
number.

Two cases are to be considered depending on number of values:
if number of values < number of arguments: it memorizes
the given values and returns the name of a function waiting for
the missing values,
else: the symbolic-expression contains evaluable terms and will
be returned to the main loop for evaluation, extra values are
just ignored.

var eval_lambda = function (s) {
 s = eval_special_forms('lambda', s);
 var name = 'lambda_' +
 Math.floor(Math.random()*10000),
 args = s.substring(1, s.indexOf('}'))
 .trim().split(' '),
 body = s.substring(s.indexOf('}')+1)
 .trim();
 dico[name] = function () {
 var vals = arguments[0].split(' ');
 return function (bod) {

 if (vals.length < args.length) {
 for (var i=0; i < vals.length; i++)
 bod = bod.replace(RegExp(args[i],
 'g'), vals[i]);
 var _args = args.slice(vals.length)
 .join(' ');
 bod = eval_special_forms('lambda',
 '{lambda {'+_args+'}'+bod+'}');
 } else {
 for (var i=0; i < args.length; i++)
 bod = bod.replace(RegExp(args[i], 'g'),
 vals[i]);
 }
 return bod;
 }(body);
 };
 return name;
};

3.1.5......eval_def()
The def special form extends the dictionary with user functions; it
gives names to constants, to evaluable symbolic-expressions and to
lambdas. User function's names are given before the main
evaluation loop and so can be called by any symbolic-expressions
anywhere in the page.

var eval_def = function (s, flag) {
 s = eval_special_forms('def', s, false);
 var name = s.substring(0, s.indexOf(' ')).trim(),
 body = s.substring(s.indexOf(' ')).trim();
 dico[name] = (dico.hasOwnProperty(body))?
 dico[body] :
 function () { return body };
 delete dico[body];
 return (flag)? name : '';
};

3.1.6......eval_if()
The if special form is twinned with an _if_ function belonging to
the dictionary, in a deactivation/reactivation process.

3.1.6.1 deactivation
The if special form returns a modified symbolic-expression where
if is replaced by _if_ and where the then_term AND the else_term
are deactivated.

var eval_if = function(s) {
 s = eval_special_forms('if', s);
 var index1 = s.indexOf('then'),
 index2 = s.indexOf('else'),
 bool = s.substring(0,index1).trim(),
 then_term = s.substring(index1+5,index2).trim(),
 else_term = s.substring(index2+5).trim();
 then_term = then_term.replace(/\{/g, '&123,')
 .replace(/\}/g, '&125,');
 else_term = else_term.replace(/\{/g, '&123,')
 .replace(/\}/g, '&125,');
 return '{_if_ ' + bool + ' then ' +
 then_term + ' else ' + else_term + '}';
};

3.1.6.2 reactivation
The _if_ function returns a modified symbolic-expression where
the then_term OR the else_term is reactivated according to the
bool_term value.

dico['_if_'] = function () {
 var s = arguments[0],
 index1 = s.indexOf('then'),
 index2 = s.indexOf('else'),
 bool_term = s.substring(0,index1).trim(),
 then_term = s.substring(index1+5,index2).trim(),
 else_term = s.substring(index2+5).trim(),
 r = (bool_term === "true")?

 then_term : else_term;
 return r.trim().replace(/&123,/g, '{')
 .replace(/&125,/g, '}');
};

Note: in the HTMLentities "&123," and "&125," the "," character
is of course to be replaced by ";".

3.2......Coding lambdatalk
Grace to a reduced set of 3 special forms [if, lambda, def],
lambdatalk becomes a programmable programming language.

1) selections can be done according to boolean values,
2) user functions can be built to bind in S-expressions future
values to arguments,
3) and the dictionary can be extended by user functions.

This section presents some examples illustrating these capabilities.

3.2.1.....constants

3.2.1.1 scalars

1: {def myPI 3.1416}
2: {myPI} is the value pointed by PI
3: {def my2PI {* 2 {myPI}}}
4: {my2PI}

1: myPI
2: 3.1416 is the value pointed by PI
3: my2PI
4: 6.2832

Note that, contrary to the classics of LISP dialects, writing myPI
displays myPI and NOT 3.1416. The name of a constant must be
considered as a pointer to a content. It's happy in a wiki context
and leads to some interesting properties, for instance arrays.

3.2.1.2 arrays

1: {def V 0.123 0.456}
2: V's content = [{V}]
3: V's length = {length {V}}
4: V[0] = {nth 0 {V}}
5: V[1] = {nth 1 {V}}
6: V[2] = {nth 2 {V}}
7: norm(V) = {sqrt {+
 {* {nth 0 {V}} {nth 0 {V}}}
 {* {nth 1 {V}} {nth 1 {V}}}}}

1: V
2: V's content = [0.123 0.456]
3: V's length = 2
4: V[0] = 0.123
5: V[1] = 0.456
6: V[2] = undefined // V's length is 2!
7: norm(V) = 0.4722975756871932

In the previous example V is defined as a list of two numerical
values. Grace to the primitive nth V can be considered as an array
with length = 2 and on which some vector algebra can be done, for
instance computing the norm of a vector. In the same way,
polynoms, complex numbers, and some others array structures
can be defined. But lambdatalk knows nothing about arrays and
other structures. The type of the value depends on the context and
on the functions designed upon them by the coder. It's up to the
coder to do that!

more to see on arrays, vectors, complex numbers in [ARRAY]
some reflexions about Object Oriented Programing in [OOP].

3.2.2.....lambdas
We have seen that lambdatalk uses the arguments' names as a
Regular Expression pattern to replace the arguments occurences
by the given values in the body's string. To avoid undesirable

replacements, arguments' names must be prefixed by some
distinctive char, i.e. a colon ":".

3.2.2.1 anonymous lambdas

1: defining a lambda with two arguments:
{lambda {:a :b}
 {sqrt {+ {* :a :a} {* :b :b}}}}
2: calling it with one value:
{{lambda {:a :b}
 {sqrt {+ {* :a :a} {* :b :b}}}} 3}
3: calling it with one value then with another:
{{{lambda {:a :b}
 {sqrt {+ {* :a :a} {* :b :b}}}} 3} 4}
4: calling it with two values:
{{lambda {:a :b}
 {sqrt {+ {* :a :a} {* :b :b}}} 3 4}

1: lambda_7908
2: lambda_8897
3: 5
4: 5

3.2.2.2 giving a name to a lambda

{def hypo
 {lambda {:a :b}
 {sqrt {+ {* :a :a} {* :b :b}}}
}}
hypo(3,4) is equal to {hypo 3 4} - > 5

3.2.2.3 a local var created with an inside lambda call

{def roundto
 {lambda {:x :d}
 {{lambda {:x :p}
 {/ {round {* :x :p}} :p}
 } :x {pow 10 :d}}
}}
{def print
 {lambda {:i}
 {br}roundto(PI,:i) = {roundto {PI} :i}
}}

{map print {serie 0 5}

roundto(PI,0) = 3
roundto(PI,1) = 3.1
roundto(PI,2) = 3.14
roundto(PI,3) = 3.142
roundto(PI,4) = 3.1416
roundto(PI,5) = 3.14159
roundto(PI,6) = 3.141593
roundto(PI,7) = 3.1415927
roundto(PI,8) = 3.14159265
roundto(PI,9) = 3.141592654

3.2.2.4 the quadratic equation
Words and numbers can easily be mixed, without any string
quotation or any special printing format. This is an example giving
the roots of a quadratic equation ax2 + bx + c = 0:

{def equation
 {lambda {:a :b :c}
 {{lambda {:a :b :c :d}
discriminant = :d
 {if {> :d 0} then
2 real roots :
 x1 = {/ {- {- :b} {sqrt :d}} {* 2 :a}}
 x2 = {/ {+ {- :b} {sqrt :d}} {* 2 :a}}
 else {if {= :d 0} then
1 double real root :
 x = {/ {- :b} {* 2 :a}}
 else

2 complex roots :
 x1 = [{/ {- :b} {* 2 :a}} ,
 -{/ {sqrt {- :d}} {* 2 :a}}]
 x2 = [{/ {- :b} {* 2 :a}} ,
 +{/ {sqrt {- :d}} {* 2 :a}}]
 }}
 } :a :b :c {+ {* :b :b} {* 4 :a :c}}}
}}

{equation 1 -1 1} ->
discriminant = 5
 2 real roots :
 x1 = -0.6180339887498949
 x2 = 1.618033988749895

{equation 1 -2 1} ->
discriminant = 0
 1 double real root :
 x = 1

{equation 1 1 -1} ->
discriminant = -3
 2 complex roots :
 x1 = [-0.5 , -0.8660254037844386]
 x2 = [-0.5 , +0.8660254037844386]

3.2.3.....recursive
Two approaches, the naïve and the fast/tail recursion.

3.2.3.1 basic recursion

{def fac
 {lambda {:n}
 {if {< :n 1}
 then 1
 else {* :n {fac {- :n 1}}}}}}

1*...*6 = {fac 6} = 720

3.2.3.2 tail recursion

{def ifac
 {lambda {:result :n}
 {if {< :n 1}
 then :result
 else {ifac {* :result :n} {- :n 1}}
}}}

1*...*21 = {ifac 1 21} = 51090942171709440000

3.2.3.3 pascal coefficients C(n,p) = C(n-1,p-1)*n/p

{def pascal
 {lambda {:n :p}
 {if {or {< :n 2} {< :p 1}}
 then 1
 else {/ {* :n {pascal {- :n 1} {- :p 1}}} :p}
}}}
{def pascal_line
 {lambda {:n :p}
 {if {< :p 0}
 then .
 else {pascal :n :p} {pascal_line :n {- :p 1}}
}}}

{map {lambda {:n} {br}{pascal_line :n :n}}
 {serie 0 12}}

1 .
1 1 .
1 2 1 .
1 3 3 1 .
1 4 6 4 1 .
1 5 10 10 5 1 .
1 6 15 20 15 6 1 .

1.1

1.2

1 7 21 35 35 21 7 1 .
1 8 28 56 70 56 28 8 1 .
1 9 36 84 126 126 84 36 9 1 .
1 10 45 120 210 252 210 120 45 10 1 .
1 11 55 165 330 462 462 330 165 55 11 1 .
1 12 66 220 495 792 924 792 495 220 66 12 1 .

3.2.3.4 some web design

{def fac
 {lambda {:n}
 {if {< :n 1} then 1 else {* :n {fac {- :n 1}}}
}}}
{def postits
 {lambda {:n}
 {div {@ style="
 font:bold {/ :n 3}em georgia;
 background:rgb({* :n 25},{- 250 {* :n 25}},0);
 border:1px solid white;
 text-align:center;
 -webkit-transform:rotate(:ndeg);
 -moz-transform:rotate(:ndeg);
 transform:rotate(:ndeg);
 "}:n! = {fac :n}
}}}
{map postits 0 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 0}

displays:

3.2.4.....formulas
As long as the mathML tags won't be recognized by Chrome,
lambdatalk can be used to display formulas.

3.2.4.1 defining some lambdatalk functions

{def numero
 {lambda {:n} {div {@ style=
"float:right; font-size:12px;"}:n}}}

{def radicand {@ style=
 "text-decoration:overline;"}}

{def quotient {lambda {:h}
 {@ style="display:inline-block;

 text-align:center;
 font-size::hem;
 vertical-align:-0.8em;"}}}

{def quotient_line
 {lambda {:w} {div {@ style="
 border-top:1px solid;
 height:0px; width::wpx;"}}}}

numero
radicand
quotient
quotient_line

3.2.4.2 using these functions to display formulas

x = {div {quotient 1.0}
{div -b ±
√{span {radicand} b{sup 2} - 4ac}}
{quotient_line 100}
{div 2a}}
{numero 1.1}

Δf(x,y,z) = {div {quotient 1.0}
{div ∂{sup 2}f(x,y,z)}
{quotient_line 60} {div ∂x{sup 2}}}
+ {div {quotient 1.0}
{div ∂{sup 2}f(x,y,z)}
{quotient_line 60} {div ∂y{sup 2}}}
+ {div {quotient 1.0}
{div ∂{sup 2}f(x,y,z)}
{quotient_line 60} {div ∂z{sup 2}}
}
{numero 1.2}

x = -b ± √b2 - 4ac
2a

Δf(x,y,z) = ∂
2f(x,y,z)
∂x2 + ∂

2f(x,y,z)
∂y2 + ∂

2f(x,y,z)
∂z2

3.2.5.....recursion vs composition
In order to compare the recursion and the compose methods, we
Compute the first derivees of the cubic function via recursion and
via composition.

3.2.5.1 recursion
The recurrent relation giving the pth finite difference is used to
write an approximation of the derivee:

Δpf(x) = Δp-1f(x+dx) - Δp-1f(x)

{def rD
 {lambda {:n :func :x :dx}
 {if {< :n 1}
 then
 {:func :x}
 else
 {/ {- {rD {- :n 1} :func {+ :x :dx} :dx}
 {rD {- :n 1} :func :x :dx}} :dx}
}}}
{def cubic {lambda {:x} {* :x :x :x}}}

{round {rD 0 cubic 2 0.001} - > 8
{round {rD 1 cubic 2 0.001} -> 12
{round {rD 2 cubic 2 0.001} -> 12
{round {rD 3 cubic 2 0.001} -> 6
{round {rD 4 cubic 2 0.001} -> 0

3.2.5.1 composition
lambdatalk functions can be partially called. Writing derivees of
any order is straightforward.

{def cD

 {lambda {:f :x}
 {/ {- {:f {+ :x 0.01}}
 {:f {- :x 0.01}} } 0.02}
}}
{def cubic {lambda {:x} {* :x :x :x}}}

{round {cubic 2}} -> 8
{round {{cD cubic} 2}} -> 12
{round {{cD {cD cubic}} 2}} -> 12
{round {{cD {cD {cD cubic}}} 2}} -> 6
{round {{cD {cD {cD {cD cubic}}}} 2}} -> 0

3.2.6.....1stClassFunc
According to rosettacode.org, lambdatalk has First Class Functions:

A language has first-class functions if it can do each of the
following without recursively invoking a compiler or interpreter or
otherwise metaprogramming:

Create new functions from preexisting functions at run-time
Store functions in collections
Use functions as arguments to other functions
Use functions as return values of other functions

Example:

1) add cube and cuberoot user functions,
2) store sin, cos, cube in the "array" fun
3) store asin, acos, cuberoot in "array" inv
4) define compose(f,g,x) as f(g(x))
5) display compose(fun[i],inv[i],0.5)
 for i in [0,2]
6) The result must be always 0.5,
within the limits of computational accuracy.

{def cube
 {lambda {:x} {pow :x 3}}}
{def cuberoot
 {lambda {:x} {pow :x {/ 1 3}}}}
{def compose
 {lambda {:f :g :x} {:f {:g :x}}}}
{def fun sin cos cube}
{def inv asin acos cuberoot}
{def display
 {lambda {:i}
 {br}{compose {nth :i {fun}}
 {nth :i {inv}} 0.5}
}}
{map display {serie 0 2}}
->
0.49999999999999994
0.5000000000000001
0.5000000000000001

3.2.7.....let & set!
It was a choice to limit the set of special forms to 3. Sometimes we
need more functionalities!

3.2.7.1 let
There is NO let special form. This Lisp's standard sugar form can
be easily replaced by lambdas. For instance, the area of a triangle
[a,b,c] is given by this formula:

Let a,b,c be the sides of a triangle,
then area = sqrt[s*(s-a)*(s-b)*(s-c)]

It's a good thing to compute once the value s used 4 times :

{def triangle
 {lambda {:a :b :c}
 {{lambda {:a :b :c :s}
 {sqrt {* :s {- :s :a}
 {- :s :b}
 {- :s :c}}}
 } :a :b :c {/ {+ :a :b :c} 2}}
}}

the area of triangle [3,4 5] is
 {triangle 3 4 5} -> 6

3.2.7.2 set!
There is NO set! special form. Lambdatalk chose to follow the
pure functional programming paradigm. But, in case of necessity,
the lisp lambdatalk function can embed calls to a tiny but true
LISP interpreter, lambdalisp, included in the "plugins" folder
which was written following Peter Norvig Python Lisp's
implementation. With lambdalisp, we can do that inside the page:

{lisp
(define make-account
 (lambda (balance)
 (lambda (amt)
 (begin
 (set! balance (+ balance amt))
 balance
))))
}

> {lisp (define a1 (make-account 100))}
> {lisp (a1 -20)} -> 80
> {lisp (a1 -20)} -> 60
> {lisp (a1 -20)} -> 40
> {lisp (a1 -20)} -> 20
> {lisp (a1 -20)} -> 0
> {lisp (a1 -20)} -> {u oops}

Note the standard parentheses () instead of the curly braces.

3.2.8.....more
We don't forget that we are in a wiki context, where text/code is
entered and evaluated in real time, and error messages are not
welcome!

3.2.8.1 lambdatalk accepts a number of values ≠
number of arguments
We have seen that functions can be called with any number of
arguments (curry, partial application). This makes things easy, for
instance :

{def boo {lambda {:a :b} {+ :a :b}}} -> boo
 // OK, it's a function waiting for 2 values
{boo} -> lambda_6195
 // OK, it's a function waiting for 2 values
{boo 1} -> lambda_3262
 // it's a function waiting for 1 value
{boo 1 2} -> 3
 // OK, it's called with two values
{{boo 1} 2} -> 3
 // OK, it's called in two steps
{boo 1 2 3} -> 3
 // OK, no matter with extra values

3.2.8.2 syntax errors are ignored
lambdatalk is permissive and it's very useful in a wiki context. For
instance :

{oops yep hip} -> {oops yep hip}

No matter the fact that oops is not a known function, or yep or hip
are unknown values, lambdatalk returns the symbolic-expression,
as it is, unevaluated, just with blue-colored curly braces!

3.2.8.3 some alternate simplified notations (a kind of
level 0 for beginners)
Beginners don't like symbolic-expressions! Because titles,
paragraphs and ordered/unordered lists are blocks between two
carriage returns, they can be written without curly braces via easy
alternative forms: _h1, _p, _ul, _ol, for instance:

{h1 TITLE} can be replaced by _ h1 TITLE CR

{p some text} can be replaced by _ p Some text CR
{ul {li unordered list item}} can be replaced by _ ul
unordered list item CR
{ol {li ordered list item}} can be replaced by _ ol ordered list
item CR

Links are not forgotten and can be written using a standard
Markdown syntax:

{a {@ href="?view=Introduction"}Introduction} can be
replaced by [[Introduction]],
{a {@ href="http://www.pixar.com/"}PIXAR} can be
replaced by [[PIXAR|http://www.pixar.com/]],

3.2.8.4 quoting, comments, locking
Lambdatalk doesn't need any quote special form. To display a
symbolic-expression unevaluated as it is, write this:

oo{first rest}oo

To hide blocks of any text write this :
oooTHIS IS A COMMENTooo

To temporarily lock the page code evaluation, for instance in a
page with long time evaluation, just unbalance curly braces.

4. CONCLUSION

We have seen the both sides of the interpreter, the underlying
engine and the syntax. We have highlighted two steps, one for the
user, the other for the coder.

1) The lambdatalk syntax is small, simple and easy to be used
by any beginner and any web-designer.
2) The underlying JS code is small, simple and easy to be
mastered by any JS developer.
3) The underlying JS code appears to be fast enough to be
usable in the context of webdesign.
4) The lambdatalk syntax appears to be powerful enough to
follow some more complex developer's experimentations.

With α-wiki and λ-talk, the beginner, the web-designer and the
developer benefit from a simple text editor and a common
syntax allowing them, in a gentle learning slope and a
collaborative work, to build sets of complex and dynamic pages.
alphawiki is free, under the Copyleft Licence.
This presentation has been made with alphawiki at
http://epsilonwiki.free.fr/alphawiki_2.

5...... REFERENCES
[1] : John McCarthy, for LISP
[2] : Ward Cunningham, for WIKI
[3] : Brendan Eich, for Javascript
[4] : Steven Levithan, for Regular Expressions
[5] : Manuel Serrano, for SKRIBE, http://www-sop.inria.fr/,
[6] : Manuel Serrano, for HOP, http://en.wikipedia.org/wiki/Hop,
[7] : Bruce R.Lewis, for BRL, http://brl.sourceforge.net/,

